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I. Introduction

The phenomenology of attenuation of elastic waves in solids as

derived from both laboratory and geophysical measurements has been

summarized by Knopoff (1964). Under conditions of harmonic excitation,

the laboratory data support, to lowest order, a 0 that does not depend

on the frequency. The seismological data support a similar conclusion;

but rather more roughly so: interpretations of free oscillation data

and body and surface wave propagation studies give Q's for S-waves or

Rayleigh waves that range roughly from 100 to 1000, over a period range

from about 1 sec to 1000 sec. But in the case of terrestrial

measurements, the measured values of Q are hardly estimates of

homogeneous samples; instead they represent averages over different

parts of the earth; the values at the longer periods are weighted

averages across the entire mantle, and those at the shorter periods are

averages in the near surface regions. Since the different estimates

sample different parts of the earth in each case, it is not clear what

the detailed frequency dependence of 0 might be for any localized

portion of the earth's interior, but the narrowness of the range of Q's

suggests that 0 probably does not vary too much with frequency in any

broad depth range of the mantle. The Q's for P-waves in the core are

very high, and do not concern us here.

The field data are perforce taken from observations at very much

longer wavelengths than in the laboratorV; .trains in usual field

measurements of seismic waves are much smaller than a suggested

threshold between the linear and nonlinear regimes of about 10-6

(McKavanagh and Stacey, 1974). On the other hand, the laboratory
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measurements are often made at strains larger than 10-6. It is

therefore plausible that two different physical mechanisms may have to

be invoked to understand the two sets of experimental attenuation

results. Attenuation in the small strain regime of mantle wave

propagation is well understood due to the significant contributions of

Anderson and Minster and colleagues (see for example, Anderson, et al.,

1976; Minster, 19R0; Minster and Anderson, 1980) who have identified

the importance of the motions of dislocations and dislocation networks,

and especially relaxation processes associated with such motions.

Between the source of large earthquakes or explosions and the

small-strain regime of thz far-field in the earth, there are several

regions where stress wave propagation is patently non-linear. In order

of decreasing strain, these are- after the source region itself- 1) a

region where the physics is dominated by the growth of numerous

fractures due to the high stress field, even leading to spallation and

fragmentation in the nearest source regions, 2) a region dominated by

passive scattering from numerous cracks where the theory of scattering

by dilute concentrations is inappropriate, and 3) the grain boundary

sliding regime. The last of these is of course followed by the linear

region, extending to the greatest distances.

In this report we consider the problems of attenuation of stress

waves in the first of these regions, namely that close to the

near-source region of an explosion, or in the domain of large ground

motions due to a strong earthquake where the dynamic strains are large.

The problems of attenuation in the second region have not been well

-2-



studied as yet, although the problems of scattering of body waves from

penny-shaped cracks has been analyzed to the second order in

concentration (Hudson, 1986; Hudson and Knopoff, 1989); such studies

have not been carried uut to higher order concentrations of cracks. In

this research we have also attacked the problems of attenuation due to

grain-boundary sliding, and have found that the early model of Knopoff

and MacDonald (1956) gives a satisfactory description of the behavior

of materials in this strain range. As remarked, in this report we

focus on the problems of crack growth under conditions of large stress

excitation.

The outermost parts of the earth are permeated by fractures in

abundance and we look to the dynamical interaction of such cracks with

the (large) stress field to understand the absorption and propagation

of the stress waves. While we can consider a crack to be an aggregate

of point dislocations, the description of motions of such aggregates is

rather difficult. Grain boundaries also represent aggregates of

dislocations whose response to external stresses are difficult to treat

because of their collective properties. It is more appropriate to

consider finite cracks, including grain boundaries considered as cracks

with irregular walls, as macroscopic objects with a dynamic response to

stress excitation given by more-or-less classical models, rather than

considering them from the point dislocation point of view.

As a generalization, Knopof and MacDonald (195b) and Knopoff

(1964) have shown that if 0 is truly frequency independent over a broad

range of frequencies for a wide variety of materials, the process

-3-



causing the attenuation must be a non-linear one; the argument,

although elementary, will not be repeated here. However, we do not

argue for 0 independent of the frequency in the stress range that we

are considering here. This relationship, to lowest order, is more or

5less valid in the experimental range of strains up to about 10- , but

the upper end of the range is more appropriate to the grain-boundary

sliding problem. While there are many measurements of deformation

response, there are few if any data on attenuation in the strain range

corresponding to crack growth. Almost all, if not all, of the

laboratory data on Q measurements in the harmonic regime are made on

compact, relatively unfractured rock. Even those few measurements of

attenuation that have been made on highly fractured rock or soil

samples, are rarely made in the strain range that would cause cracks to

grow. Thus the results reported below are theoretical. As remarked,

the strain range of applicability of these calculations corresponds to

the very near field of explosions or large earthquakes. In the present

case, we are without adequate controlled experimental guidance.

Before taking up the problems of crack growth response under the

influence of a strong, transient stress wave, we consider the growth of

6racks Linder periodic excitation. The failure of aircraft structures

under continuous flexing, i.e. loading and unloading, is a prominent

contemporary example of such material response. In this model of

failure, pre-existing cracks grow under the ilot 1 en'e of the,

oscillatory stress; ultimately these cracks fuse with one another to

make large cracks and when the dimensions of a crack become comparable

to the dimensions of the specimen, catastrophic failure is the

-4-



consequence. This type of behavior is called fatigue crack growth in

the engineering literature. We consider only the problem of the growth

of isolated cracks, and bypass the problems of crack interactions; the

latter problem for the case of cracks in a static external stress field

has recently been considered from a quasistatic growth point of view by

Yamashita and Knopoff (1989), but the case of dynamic stress excitation

has not been discussed, as far as we know. Since growth involves the

breaking of bonds at the tip or tips of a crack, it is plausible to

suppose that if the change in crack length of an isolated crack is very

small, the amount of energy absorbed out of the seismic wave 6E is the

same on each cycle and therefore yields a ratio of 6E/E = 2nQ- that is

independent of the frequency, where E is the peak energy stored. We

investigate the validity of this presumption.

A second model of crack growth involves stress-corrosion, i.e.

the hydrolytic weakening of silicate bonds at crack tips, which can

generate crack growth/extension. We will see that this process will

give results that are similar to those from fatigue crack extension.

-5-



II. Fatigue Crack Growth

We consider non-linear models of attenuation caused by crack

growth under external time-dependent stress excitation. In the case of

harmonic stress excitation, our goal was to construct a model that

would be appropriate in the very large strain regions that might be

found at very short range from explosions or earthquakes. As noted, we

are not aware of laboratory data to support this ambition in the crack

growth range of strains. The conditions of crack growth depend on the

stresses at the crack tips, which are of course intensifications of the

large-scale field due to the presence of the cracks.

Two generic models of crack growth can be considered, namely

fatigue crack models and stress-corrosion models. In the fatigue crack

case, the large stress concentration near a crack tip induces a

plastic, or slip-weakening zone in the vicinity of the tip (Barenblatt,

1962). Beyond the outer boundary of the plastic zone, the material is

presumed to be perfectly elastic. For purposes of pedagogy, the

boundary between the elastic and plastic regions will be assumed to be

sharp. The degree of weakening in the plastic zone increases as we

approach the crack tip; at the crack itself, the stress has dropped to

such a low level that dynamical sliding can take place. A

slip-weakening model has been applied to dynamical theories of fracture

as well as to quasistatic crack growth prol-Jems ini seismology by a

number of authors (Ida, 1972; Palmer and Rice, 1973; Andrews, 1976:

Rice, 1980; Kostrov and Das, 1982, Chen and Knopoff, 1986 a,b).

-6-



The slip-weakening model is amply buttressed by results from

microscopic examination of and macroscopic deformation experiments on

metals and rocks. While there is (again) ample evidence for the

presence of non-linear viscous creep in highly stressed rocks

especially at normal and high temperatures and in the presence of

fluids (see Griggs, 1940; Griggs and Handin, 1960; and many others), it

must be remarked that at liquid nitrogen temperatures and under very

dry conditions, the deformation proceeds by microcracking ahead of a

main crack (Hoagland, et al., 1973); Hoagland et al. have gone to

special effort toward "eliminating plastic deformation". However under

normal environmental circumstances, plastic deformation in a

slip-weakening zone is an appropriate model to describe the response in

the region ahead of an existing stressed crack. Indeed, the

deformation of an aggregate of microcracks in the deformed zone ahead

of a crack tip, with increasing density of microcracks toward the crack

tip, may also have an equivalent plasticity-slip-weakening continuum

description. In the strain range of interest, we will take it that

slip-weakening, whether it be associated with plasticity due to slip

band formation or microcracking, will be the appropriate description of

the deformation in the zone immediately adjacent to the crack tip.

In fatigue crack models, the amount of extension i L is calculated

fLom Paris' Law, which is widely discussed (Paris. 1964: Rice. 1967:

Cherepanov, 1979; and many othets),

L - (KK*)4 (K)

-7-



where K is the stress intensity factor at the crack tip and K * is the

stress intensity factor at which growth begins. This relation has been

verified experimentally many times over under conditions of monotonic

loading, but mainly on samples subjected to tensile stresses. It is

plausible to assume that these results also apply to shear cracks.

Differences in the response between these two modes of excitation arise

in the case of oscillatory loading; the sample is in tension for

one-half of a sinusoidal cycle of loading, and on the simplest picture

in the case of tensile-compressional loading, accelerated growth will

takes place during the quarter cycle for which the tensile stresses are

increasing. In the case of a crack under shear loading, it is the

absolute stress that is involved in crack growth; the increase of

stress that initiates and promotes growth takes place on alternate

quarter cycles. Our examples will be given for tensile cracks only for

the purposes of clarity. We do not believe the results will be negated

for shear cracks, because the stress singularity at the edge of a shear

crack has the same relationship to external stress and to crack

geometry as in the case of a tensile crack. FuLther the nature of the

plastic deformation in both the rock deformation shear experiments

(Griggs, 1940 and successors) and tensile deformation in metals

experiments shows similar properties, except for the time constants,

which are scaling factors in the calculations.

The relation (1) can be derived rather !inplv i. follows: The

slip-weakening zone extends from the crack tip to the clastic-plastic

boundary. On a continuum theory, the energy required to bieak the

bonds at the crack tip itself is proportional to the sliding friction;
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the strength of the material at the crack tip is zero if the sliding

friction is zero, an assumption we make henceforth. The strength in

the plastic zone drops to zero at the crack tip because of accumulated

damage or slip in the zone. Thus all of the energy required to advance

the edge of the crack must go into advancing the plastic zone of

deformation and to increasing the deformation in the zone. (We assume

here that the rate of advance of the crack is slow enough that

radiation effects can be neglected.) The size of the plastic zone is

estimated as follows: Let the elastic-plastic boundary be defined by a

critical yield stress, oy. The stress in the vicinity of the crack tip

falls off with distance x from the where K -aLI/2 is the stress

intensity factor, L is the length of the crack, and o is the external

applied stress (Fig. 1). Thus the radius R of the plastic zone is

prcporticnal tc the square of the applied stress, R -(7/6y) 2L. The

energy per unit length needed to create a plastic zone can be estimated

by the area Af the zone, and thus is proportional to L2, and hence to

K4. The remainder of our discussion concerns, in one form or another,

the appropriateness of relation (1), and especially the significance of

the quantity K.

With regard to the deformation response to a more-or-less simple

stress impulse such as might be expected in the near field of an

explosion, the above description probably suffices. The cracks grow

under the influence of the increasing stress. (Chen and Knopoff (1986)

have discussed the growth of simple cracks urder a large stress in the

presence of a slip-weakening zone in a linear viscoelastic medium; it

is unlikely that the viscoelastic property will be linear in nature in

-9-
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the slip-weakening zone.) As for the response of cracks to the waning

part of a simple stress impulse, we will show that it is probably

inappropriate to assume that the lengths of the cracks are frozen when

the stress maximum is reached and hence it is inappropriate to assume

that the response during the reduction of the stress after the maximum

is reached is of no concern to us. To discuss the problem of the

response to both oscillatory and impulsive stresses, we have to

describe in detail the nature of the deformation in the slip-weakening

zone.

The zone of plasticity/slip-weakening in metals is a complex

region whose microscopic properties suggest that the deformation takes

place along a series of steps formed by the offset of relatively

coherent slabs of matter, as though the material had been sheared along

along well-defined planes (see Lin, 1977, for example; also see

Fig. 2). In metals, the thickness of these slabs may be no more than a

few microns. Many of the features of the deformation are similar for

rocks, including the presence of slip lamellae, twinning, etc.

Microcracking ahead of cracks can also occur. We have stated that we

believe that microcracking may have a continuum description similar to

the one we use here for plasticity. In any case the plasticity model

is an effort to override the microscopic details of deformation with a

continuum theory. We assume that the continuum description of the

plastic state of metals is appropriate for rocks as well.

-Ll-



Courtesy NV. A. Wood

-Notch-peak geo"7errv which devclops at slip bands (a) schematic representat ion.
(b) taper section of copper after 2 x 10' cycles at 0. 003 shear strain iii alternatinig torsion.
Taper magnification of 20.

Figure 2 (a-e) Photomicrographs and schematic cross-sections of copper, shoving
slip-banding(from Grosskreutz, 1971).

-12-



L

(c)

i SURFACE

,-SLIP BAND

MATRIX

(d) Dh), atmi 11 structur, i %lip handh of fattgued (opp'r I. ukas, K'ml. and
Ke/ct, Ac! 16

- I 3-



Su .rface Tfip loncis on faripied oppt r (electron replicaI

-1I4-



III. Fatigue Cracking: The Cyclic Loading Problem

The interpretation of Paris' Law may be clearer for the case of a

simple pulse than for cyclic loading, but the cyclic problem has

certain perplexing features that will ultimately bear on the pulse

problem as well. In one version it can be argued that, as a new peak

in cyclic stress is reached, "a new plastic zone forms superimposed

over the previously formed zones" (Paris, 1964) due to the theoretical

infinite stress at the crack tip at x = 0. Thus Paris, Cherepanov

(1979) and others argue that K* is the value of the local stress

minimum, and/or that cracks begin to grow after the stress has reached

its minimum, and that the amount of crack growth is proportional to the

fourth power of the difference between a maximum in stress and its

preceding minimum. Under this model, the crack grows on each

successive cycle of stress, with reduced memory of the deformation on

preceding cycles of the stress, since the plastic zone must be a new

one on each stress cycle; the crack always grows into a zone of elastic

material at the start of any phase of increasing stress. Thus the

Paris/Cherepanov et al. model asserts that the amount of crack growth

per cycle is proportional to the fourth power of the difference between

the maximum stress on any cycle and the last preceding minimum.

However this model, argues for the disestablishment of the

plasticity upon even a partial reduction of thc load stress, in order

that each succeeding cycle of increasing stress initiate a new episode

of deformation. As an illustration of the difficulty with this model,

consider the two hypothetical loading sequences of Fig. 3. In the

-15-
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Figure 3: Two hypothetical loading curves.
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first case, it is an experimental fact that the crack grows when the

second maximum is ieached. In the second, according to the model, the

crack cannot grow between the two times (tA,tB) because the stresses in

the plastic zone are in equilibrium with the strength distribution

given by the constitutive equation for the slip weakening zone and the

size of the plastic zone, i.e. the crack cannot grow because the

stresses never were decreased. Therefore, we conclude that the ability

of the crack to grow on the next application of the maximum stress must

depend on the way in which the plastic zone behaves in the waning part

of the stress cycle, and that the conventional model must be modified.

It is more likely that the damage resulting from the earlier stages of

deformation has a strong influence on damage history as the later

loading history evolves.

Weertman (1978, page 290) offers a solution to the problem:

"during each stress cycle, the material ahead of a fatigue-crack tip is

progressively "weakened". The material closest to the tip is weakened

the most because it has been subjected to more cyclic plastic

deformation than the material farthest from the tip, which has just

entered the plastic zone. In each stress cycle, the crack tip passes

through the most weakened and damaged material and comes to a stop in

less damaged material. Subsequent stress cycles in turn increase the

damage of this material and permit further crack advance." Weertman

then derives an Accumulated Damage Thcory.

-17-



We focus on Weertman's use of the word "during", which we believe

attacks directly the question of why the stress pattern in the plastic

zone should not be exactly the same at one peak of a cyclic excitation

as on the next. A detailed explanation of the process bears on the

issue of the attenuation of stress waves in the fatigue crack regime.

We restate the problem: Why should the damage be increased in the time

interval between successive peaks of the stress cycle in a perfectly

sinusoidal stress excitation so that the crack will grow when the next

peak occurs? If the strength in the slip-weakening zone were perfectly

adjusted to match a given maximum in stress, it would be in the same

configuration at the time of the next maximum as well, and thus there

is no mechanism to compel the crack to grow. Thus, although the Paris

model fails to offer a sound physical reason for deflation of the

plastic zone and replacement by a strong elastic region, we must

present an argument for accumulation of damage in the time interval

between successive peaks of a perfectly sinusoidal applied stress.

All of this argues against a static theory of fatigue crack

growth, even though the process of deformation may be taking place

quasistatically. The differentiation of equation (1) with respect to

time

dL _ d(K-K*) 4  (2)
dt dt

will lead to incorrect results because of the failuie to account foi

processes that depend on loading and unloading histories. In other

words, a statics theory such as (1) omits certain important

-18-



time-dependent terms even though the rates of deformation we are

considering are slow.

To get around the difficulty, we develop a model for the increase

of the damage, i.e. a lowering of the strength, in the time interval

between the two peaks of a cyclic stress. The consequences of the

model will have significant bearing on our ultimate concern, which is

the attenuation of stress waves. We assume that the evolution of slip

in the plastic zone, via the mechanism of slip banding, cannot be an

instantaneous process, but is rather one that takes place with a time

constant that implies some sort of rate process. Let us call this

time-dependent process of evolution a creep viscosity, where the term

"viscosity" is intended to describe the fact that the slip bands and

the other microscopic manifestations of plasticity cannot form

instantaneously, but instead they form and slip along them takes place

over some extended time interval. In some sense, this time constant

could be measured by applying a stress greater than the yield stress to

the plastic zone, and measuring the rate at which it deforms. Whether

this "viscosity" is characteristic of a linear or a non-linear process

is probably not too important for our purposes here; a method for its

identification will be noted below.

Within the plastic zone, there is a gradient of yield strength

ranging from zero at the crack tip. up to the material yield strength

at the elastic-plastic zone boundary; we call this the local yield

strength. The precise form of this distribution depends on the nature

of the slip-weakening physics but the details are probably not too

-19-



important for this discussion. The local yield strength is evidently

determined by the peak applied stress, and can be obtained by

interpolation between zero, the value at the crack tip and ay at the

plastic zone boundary at distance R.

If there is a time constant for the development of slip, then slip

must continue to take place over at least part of the plastic zone,

during the times when the stresses are positive, including the waning

portion of the sinusoidal stress cycle. These stresses continue to

cause creep motions in part of the plastic zone even though the stress

is not at the maximum. As the excitation stresses decrease after

reaching the peak, the stresses will be at the local yield strength in

a smaller and smaller part of the plastic zone, more and more

concentrated near the crack tip; this zone contracts from the largest

dimension of the plastic zone reached when the load or external stress

is at its peak. In the inner, contracting zone, (Fig. 4), creep on

slip bands continues to take place, while on the outer parts of the

plastic zone bubble, slip will have ceased, and this outer part of the

plastic zone now responds only elastically. Continued displacement due

to creep in the contracting plastic zone will generate an increase in

the "damage", i.e. a lowering of the local strength in the region near

the crack tip, when compared with the condition at the peak.

As the applied stress increases on the nexf cycle, the accumulated

damage (to use Weertman's term) near the crack tip is higher than that

at the time of the preceding maximum and the local strength is lower;

and thus the crack advances. The crack advances because the stress

-20-
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Figure 4. Schematic diagram illustrating collapse of the plastic zone "bubble"

upon unloading. At time of maximum stress tAt the plastic zone has a boundary

BA; the stress distribution is given by OA; inside the plastic zone, the yield

streng-th is equal to the stress OA .

At time tB? the plastic zone bubble of active creep has collapsed to boundary BB.

The region between BA and BB remains damaged but damage is not increasing due 
to

active creep at time tB. Continued creep with BA reduces the strength to below

the value it had a time tA. At tB the stress distribution is OB.
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profile gives a stress in the neighborhood of the crack tip that is

greater than the strength of the plastic zone, as a consequence of the

earlier accumulated creep near the crack tip. The crack advances by an

amount so that the stress profile for the increasing stress and the

local strength profiles are tangent, most of the creep damage on the

waning stress cycle is localized near the crack tip, where the material

remains plastic even under small stress. Thus the advance of the crack

tip takes place early in the episode of increasing stress. But the

outer elastic-plastic boundary only advances when the stress is near

the maximum. Thus the inner parts of the plastic zone undergo

increased creep in the early stages of an increasing later cycle of

applied stress; as the stress increases, the zone of increased creep

progressively moves outward in the plastic zone. When the sinusoidal

stress is near the maximum, the creep "wave" encounters the old

elastic-plastic boundary, ard only then does the boundary move outward.

To summarize, the crack tip advances in the early stages of the

increasing stress on the next cycle and the elastic-plastic boundary

moves outward when the applied stress is close to the maximum of the

cycle. We return to the latter point when we design an algorithm to

calculate the response to an oscillatory wave packet in the time

domain.

The introduction of the concept of continued creep in the damaged

region means that the rate of deformation will depend on a rate of

formation of deformation such as slip banding in the plastic region.

Thus the amount of slip will be dependent on the time interval over

which the stress remains positive (see interval tA to tC  in Fig. 4).
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It follows that the amount of crack growth will be a function of the

frequency of the applied load stress. Hence the experimentally

determined rate of crack growth should show a significant decrease with

increasing frequency of the external applied stress, a prediction

consistent with the experimental results of James (1972) (Fig. 5). In

principle, the frequency dependence in these experiments should provide

a method of determining some features of the creep viscosity in the

plastic zone. As remarked, we do not expect that the viscosity should

depend significantly on the constitutive law profile for the strength

distribution in the plastic zone; Chen and Knopoff (1986a) have shown

that two relatively remote constitutive lads for the slip-weakening

zone lead to approximately similar stress profiles in the plastic zone.

We return shortly to the question of the dependence of the deformation

ol the amplitude of the applied stress.

This model allows us to undeistand the physical reasons behind

several of the experiments performed with time-dependent loading.

Spectrum loading is itself a subject for experimental investigation

that has commanded an extensive Ii tctature (see Wheeler, 1972; von Euw,

et al. , 1972; Wei and Stephen,;, V)75; Kogaev and Lebedinskii, 1985, for

example). In the spectium loading problem, an amplitude modulation of

the sinusoidal excitation is applied to the material; often the

amplitude modulation is rest!icted to a single cycle having an

unusually latg , ieak ampli t idE, vi th the lemainder of the time set ies

being a cycl if excitation ot ielat ively constant ampl itude (Fig. 6).

In general, the experimental s-ol tl show that tIe crac k growth rate

reaches a plateau for an extende-d tim, fol lowing the application of the
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Figure 5. Effect of frequency crack growth in stainless steel. The crack growth

rate is lower for higher frequencies of loading. (Data taken from James, 1972).
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extraordinary large stress; after some time, growth Lesumes. The

result can be understood in terms of the above model as follows (see

Fig. 7): At the time at which the applied stress is at its greatest

peak, the strength profile in the plastic zone is given by the same

construction as before; the plastic zone will have grown dramatically

compared with growth rates just before the spike. During the episode

of waning stress in the wake of the extraordinary peak, the strength in

the region near the crack tip is significantly lowered due to

post-big-peak creep. On the increase of stress leading to the next

"normal" peak, the stress profile follows the strength profile that has

been left in the wake of the extraordinary peak, the strength in the

part of the plastic zone nearest the crack tip can no longer support

stresses of that magnitude; the stresses in the remainder of the

plastic zone are less than the strength. The stress due to the l.-ser

peaks is indeed small, but nevertheless the stress in a small part of

the plastic zone is greater than the local strength; the strength curve

that has been set up by the waning branch of the extraordinary stress

pulse is concave upwards relative to the constitutive relation, the

latter is drawn in Fig. 7 as a straight line. The excess of stress

over the strength is only a small amount, so that the crack now

advances very slightly, and continues to do so for a long sequence of

"normal" oscillations. The crack tip advances to a position so that

the stress curve now lies outside the concave strength curve. During

all of this plateau period, the outel plastic-el3stir boundary remains

more or less fixed in the position it had at the time of the

extraordinary peak. After many cycles after the spike, the more

rapidly moving crack tip at last approaches the slowei moving plastic

-26-



I I

A BC

07c X
qC

Figure 7. An extraordinary peak in a spectrum loading experiment causes a large

plastic region to appear. Due to accumulated creep damage near the crack tip,

the strength profile is concave upward. The stress profile on a subsequent

smaller peak is greater than the concave strength profile and the crack tip

advances slightly; the plastic zone boundary remains fixed.

As a peak tA, the stress/strength profile in the plastic zone is aA . At time of

zero crossing tB, the stress ahead of the crack is zero and the strength is given

by the curve aB, which is lower than OA because of the accumulated creep damage

between the two times. At time tc, the calculated stress in the plastic zone ac

is greater than the strength aB; the crack tip then advances a small amount and

the new stress profile both inside and outside the plastic zone is oC . The

central diagram illustrates the advance of the crack after several cycles of

reduced stress peaks in the shadow of the extraordinary peak.
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zone boundary, the strength profile now becomes a relatively steep one,

the size of the plastic zone is again relatively small, creep decay is

now relatively large once again, and the crack resumes its growth at

the "normal" rate.

IV. An Approximate Model

The application of the model of accumulated damage to the problem

of attenuation of stress waves that are non-sinusoidal but nevertheless

oscillatory is difficult. We must convolve the accumulated creep with

the complete stress-time history. The development of a computational

model to accomplish this task is being undertaken at the present time.

Pending this development, we offer a simple and hopefully adequate-

in-some-respects algorithm that simulates some of the features of the

above crack growth model. The approximate model works well for

sinusoidal excitations and may work well for non-sinusoidal stresses

that are relatively non-drastic perturbations ot sine waves.

Most of the stress wave energy loss and hence attenuation is

associated with the outward motion of the elastic-plastic boundary.

Thus stress wave attenuation is associated with the peaks of the

loading cycle for those peaks that are about as large or larger than

their predecessors. The amount of motion drp(,nd,. on th cumulati ',

damage in the interval since last motion of the boundaiy. which "e

estimate by the time over which the stress has been applied. We use

the following empirical procedure for implementing thes e ideas. From a
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stress maximum, draw an exponentially decaying curve with some given

time constant, which is a parameter of the system. At the point of

intersection of this decay curve with a rising curve of stress

excitation, we identify the base stress level from which growth of the

plastic zone boundary takes place. A new exponential decay curve is

started from the next maximum in the stress excitation function

(Fig. 8). If an exponential decay curve skips over the top of a

subsequent crest and strikes a later rising curve of stress, then the

intervening stress cycles are ignored and energy loss is calculated

from the new point of intersection. To ensure universality, i.e. to

be able to apply this rule to a wide variety of materials, we require

that either the decay rate be very small or very large. It cannot be

very large at acoustic frequencies, since this would generate an

intersection at every zero crossing (in an increasing sense) of the

stress wave function, which is the Paris model and we have argued that

this model is inappropriate. Thus the exponential decay rate is

probably small.

To calculate the Q for harmonic excitation under the conditions of

this model of damage, we proceed as before, with the exception that the

energy lost per cycle is now proportional to the amount of new material

converted to the plastic or slip-weakened state. The area of advance

of the slip-weakening zone bubble on any cycle is the area of a

crescent-shaped (lune) region at the outer edge; the area of the lune

is proportional to the quantity (L.dL) where L is the radius of the

plastic zone and dL is the amount of growth per cycle. As before,

L - K2; in this case, the displacement of the plastic zone boundary is
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Figure 8. Schematic diagram to indicate effects of creep on

attenuation irk cases of fatigue crack growth.

a) Hypothetical Oscillatory Stress Excitation (solid) with various

presumed decays to simulate effects of creep in plastic zcne

during waning part of oscillatory stress.

1) Creep time constant T = -

2) Large creep time constant so that exponential decay fails t-)

intersect a weaker stress pulse occurring later.

3,4) Smaller creep time constants, creating intersections with

the flanks of a later, weaker stress oscillation.

5) Creep time constant T = 0; K*=O.

b) Non-transmitted (absorbed) stress.
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equal to the amount of growth of the crack at its tip. The latter

quantity is proportional to the damage in the vicinity of the crack

tip. From the Paris Law, the incremental growth per cycle must be

proportional to K38Kr , where 6Kr is the amount of stress relaxation due

to creep in the plastic zone in the interval between stress peaks. The

quantity 6Kr depends only on the the viscous creep rate and the time

between peaks of the sine wave and is independent of the external

stress; Kr cannot depend on the external stress, since the interior of

the plastic zone is already at the critical state. Thus the increase

in area, and as a consequence the energy lost per cycle, is

ptopoitional to K5 . Since the peak energy is proportional to K2 , it

follows that Q -1 for harmonic excitation for this model must vary as

the third power of the stress, i.e. with the same exponent as in the

velocity of growth law. It is of interest to note that the third power

law for growth of cracks, which must correspond to the creep

deformation rate in the plastic zone, is approximately the same

exponent that is appropriate for the nonlinear viscosity of the lower

crust and upper mantle under excitation rates that are orders of

magnitude slower than those in the laboratory experiments of fatigue

crack growth, but this may only be coincidental. Our prediction that

the growth rate per cycle is K3 6Kr, with 6K. independent of the stress,

and hence is proportional to the third power of the applied stress, is

confirmed experimentally (James, 1972).

To summarize he appro- i n); t r, mode I , we vc umed that K on anv

increasing st.ess cycle is a monotonically decreasing function with

elapsed time since an earlier stres!s peak: we propose that this creep
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decay time be a constant of the s'stem. In figure 8, an application of

a first episode of increasing stress produces absorption (of stress)

proportional to the quantity K3 (,IK/dt), where K is itself proportional

to the stress. This follows directly from the ordinary formula (2) for

application of a monotonic stress to fresh material. With regard to

the response in the oscillatory part of the excitation history, a creep

decay with infinite time constant such as curve 1, produces a temporal

shadow on later cycles of the oscillatory stress wave so that there

will be no absorption. An exponential decay curve such as curve 4,

will intersect a later oscillatory stress at some point along its flank

and trigger crack growth (and hence absorption) from this point; the

intersection of the exponential decay and the increasing stress curves

identifies the value of K*. In the case of a zero decay constant

(curve 5), the value of K* is zero. (For the purposes of illustration,

we have assumed that crack growth only takes place on the increasing

part of the positive half cycle of stress. As remarked, mole properly.

growth for shear cracks will take place on both the positive and

negative half cycles of increasing absolute stress.) For purely

sinusoidal excitation (with constant amplitude), the energy lost per

cycle in this model depends on the ratio between the creep decay times

in the plastic zone and the period of the applied stress. There are

two extreme models. For large decay rates (or extremely long periods),

0 will be independent of frequencY; for small ciccp deciy rates (vchich

corresponds to high frequen y n nd f'i lijio, '1p 1,

plastic zone, the approximate modl :u9e ;ts tha ,0 .ill vary as w.

The proof of the later statement i, ';imple: foi :mall IIla:x ed qtri se z

in the plastic zone, the stress relaxation 6Kt vi h 1o of the order of
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VT at the time of the next peak of stress, where rl is a creep rate and

T is the period. Thus the energy loss per cycle will be proportional

to W-l

V. Crack-Growth due to Stress Corrosion

In the stress-corrosion case, it is found experimentally that

v=dL/dt - eK/Ko or v - Kn (3)

where n is a large number. Values of n range from 10 to 170 (Atkinson,

1982, 1984; Swanson, 1984). The exponential and power law versions fit

the data about equally well over the range of stress intensity factors

in most experiments; the exponential version has a physical basis in

thermodynamics. The quantity K. is proportional to temperature and

thus stress corrosion can be identified with a thermal activation

process. The physics of the process is not that of bond breaking by

the application of excess stress, as it is in the fatigue crack cases,

but instead works by chemical or hydrolytic bond weakening of the

silicon-oxygen bond in silicates, due to the action of the fluid. This

too is a time dependent process; the number of bonds that break depend

on how long the excess stress has been applied. Once again a

slip-weakening zone develops with the greatest damage being found near

the crack tip. If the rate at which silicate bonds can he attacked is

very slow compared to the stress (sinusoidal) excitation rates, 0 will

be frequency dependent as for fatigue cracks, with exponents that will

depend on the rate of deformation in the plastic zone; as above, 0 will
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vary as wo for small relaxations; the higher Q's correspond to the

shorter times available for the stress to act in the cases of high

frequency excitation. For rapid reaction rates, Q will be independent

of the frequency, but this is probably unlikely to be the case at

seismic frequencies. If the energy needed to break bonds is small, the

energy in the seismic wave will be dissipated in the migration of the

plastic zone, but if the energy for bond breaking is not insignificant,

Q-1 will have an additional term in the stress dependence. By the

argument given above for fatigue cracking, Q- 1 must vary as a3.

In both the fatigue crack and stress corrosion cases, there is a

plastic zone in the neighborhood of the crack tip. The function of the

corrosive fluid is to weaken the bonds at the crack tip; this therefore

plays the same role as the bond-weakening creep that has been described

for fatigue cracking. Thus the attenuation response mechanism is the

same in both cases. There is however a competition between the two

processes: the one with the faster rate will dominate the rate at which

the bonds are weakened. From eq. (4), stress corrosion effects will

dominate at large stress intensity factors. The stress and frequency

dependence of 0-1 in the stress corrosion case are likely to be the

same as in the fatigue cracking case, as long as the creep is small

between successive peaks of an oscillatory stress. The increased creep

"viscosity" at high stress intensity factors means that the transition

between the small damping and the large damping regime i,: found ;t

higher frequencies; in this case, a-' Lemarked. 0 would h- likely to he

frequency independent over a broader (low-)frequency range.
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Both the stress corrosion ;nd fatigue cracking mechanisms are

generic. We can generalize by ioting that any Markov process for which

the work done in energy removal from the deformation is dependent only

on the state of stress on the system at the time will yield a value of

o that is likely to depend on an even power of the frequency, while

non-Markovian processes such as energy loss by frictional forces that

depend on velocity, i.e. such that the work done depends on how long

the forces have been applied, are likely to give odd powers of the

frequency exponent for Q (Knopoff, 1964). Both the cases of extension

due to fatigue cracking and stress corrosion are examples of

attenuation with time-delay effects, and must therefore be considered

to be non-Markovian processes.

VI. Non-sinusoidal Excitation

We have considered the attenuation due to these nonlinear

mechanisms for cases of excitation wave forms that simulate first,

stress waves due to explosions and second, seismic signals considered

by engineers to be appropriate to describe ground motion in large

earthquakes. Our simulations were straightforward; in the explosion

example, we used a simple pulse from SALMON. The attenuation waveform

in both cases was computed by generating the function a3 (da/dt) from

the stress wave. In the explosion ('a-:,- ,ie assumed that this operated

only on the waxing part ot the stiess waveform. In the Seismic ground

motion case we used the approximate model with three different 'alues

of the decay exponent that is designed to simulate creep during the
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unloading or waning portion of the stress cycle (not important for the

case of the simple pulses from explosions). According to the

approximate model of Fig. 8, we then applied the above operator on the

waxing part of the stress wave for stresses greater than the

intersection of the decay curve from the preceding peak.

Although it is not permissible to take the Fourier transform of a

non-linear operator, we can easily find the equivalent transfer

function of the operator, by comparing the spectra of the excitation

and absorbed signals. The fit of the dependence of Q on frequency has

been obtained by a maximum-likelihood estimation technique, assuming a

power-law dependence of Q on the frequency. In both cases, whether for

explosion (Fig. 9) or earthquake ground motion waveforms (Fig. 10), we

find that Q - w, in unexpected agreement with the theory for

sinusoidal excitation (Table i).

In fact, examination of Table 1 shows that the exponent is

somewhat less than one in varying amounts that depend on the decay

constant. Below we present arguments that the Q-1 spectrum should have

a curvature that depends on a characteristic time or frequency for the

seismic signal. Since in this case the characteristic frequency is the

corner frequency, we expect, from qualitative arguments given in the

next section that the estimates of slope of the log Q-1 vs. log

frequency curve are contaminated by source spectrum effects and that

neither of the curves of Figs. 9 and 10 are independent estimates.

But the slope at frequencies less than 1.5 hz, i.e. at the low

frequency end of Fig. 10 is a more reliable estimator of the exponent.
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Figure 10. a) Stress wave for simulated strong earthquake ground motion.

Displacement spectrum has corner at 1.5 hz with w-1 rolloff; bandvidth

extends from 0.05 hz to 20 hz. The phases are random. (Program after

Gasparini and Vanmarcke, 1976.) The w 1 roiloff is inconsistent with the

more commonly accepted w-2 model (Brune. 1970) which is a theory for small

earthquakes. Haskell (1964) suggested that w-1 might be more appropriate

for large earthquakes, because of "stuttering" during rupture. Actual

exponents for large earthquakes fall between these two values (see Hartzell

and Heaton, 1985, 1988, for example.) b) log 0- 1 vs. log frequency for

fatigue crack growth model. Interrupted solid line is power law fit with

exponent given Table 1. Creep decay constant is zero.
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Table I

Maximum likelihood estimates of exponent a

Power Law Fit Q-1= Af& to Spectral Analyses

decay times T (sec)

T-0 v-=0.4 T

Earthquake
Ground Motion -0.923 -0.841 -0.776"

Explosion -0.956

i*

The exponent approaches -1 if the bandwidth is narrowed to
include only frequency estimates below the corner frequency.



Numerical experiments with the diagram of Fig. 10 show that this is

indeed the case with the slope steepening appreciably toward -1 as one

uses a smaller and smaller sample of frequencies, biased toward the

low-freqi'ency end of the spectrum. This issue is discussed in the next

section, with reference to the results shown in Fig. 9.

We can make the obvious argument for the differences between the

results for harmonic excitation, with zero exponent at extremely low

frequencies and with an exponent of -1 in the case T = 0. We suppose

that this is due to the frequency multiplication by the non-linear

operator, and the feedback at irregular phase of significant amounts of

multiples of the low frequency parts of the signal into the higher

frequency parts of the spectrum. In the case of sinusoidal excitation,

the scattered signal never reappears as higher harmonics in the

detection pass band of the system for a narrow band-pass detector. We

note that the case r = 0 which gave an result of Q independent of

frequency in the sinusoidal case, gave the exponent closest to unity in

the case of the simulated seismic ground motion.
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VII. Simple Model of an Explosion Waveform

We can derive an approximate expression for 0(w) in the case of

crack-growth absorption for the problem of excitation by an explosion

signal. For small attenuation we can write

w F.T.(absorbed signal)

F.T.(incident signal)

Let us represent the main part of the excitation from the explosion as

a distorted half-cycle of a sine wave (Fig. 11). Since the K3

operator is significant only near the peak, the absorbed signal will be

essentially a short pulse of some width T. The Fourier transform of

the absorbed signal will be essentially of the form appropriate to a

pulse of duration t, namely proportional to sin(wT)/w. The Fourier

transform of the incident signal will be essentially proportional to a

function having the form sin(kwT)/w, at least for low frequencies; the

details of the spectrum will depend on the particulars of the wave

shape, but for this rough calculation, our description will suffice.

The time T is the interval between the first arrival and the first zero

crossing of the incident wave function. We gauge the size of the

coefficient k by the frequency of the first zero crossing of the

spectrum. For a square wave (incident pulse), the first zero crossing

is at I/T (and the spectrum above is exact): h2nce k=l. For a

half-cycle of a sine wave, the fir t zero crossing is at 3/2T; we set

k=2/3. (For a delta function, the first zero crossing is at -/T.) Thus
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Figure 11. a) Schematic explosion stress pulse. The first large

oscillation has a duration T. b) Schematic non-transmitted (absorbed) part

of stress signal due to fatigue crack growth (solie). The absorption signal

is concentrated near the peak of the first large oscillation in the incident

signal. We represent the absorption signal by a square wave of duration T.

c) Square wave representation of the incident impulse. d) Half-cycle sine

wave representation of the incident impulse. e) Delta function

representation of the incident impulse. f) Spectra of the three approximate

representations of the Incident impulse. The first zero in the spectrum of

a) is near 1.8/T.
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the more spiky the first pulse, the larger the value of k. Thus the

spectral behavior of 0- 1 is approximately

0-1 = -I sin(wr)/w
sin(kwT)/w

- I 1 sin(rr)
sin(kWT)

Thus, at low frequencies, Q- 1 -w. There should be a peak in the

spectrum of Q -1 at the frequency corresponding to the first minimum in

the spectrum of the incident pulse. Since the first half-cycle of the

incident pulse has a duration of about 0.002 sec, and since the

incident pulse is slightly more spiky than a half cycle of a sine wave,

it follows that a peak in the Q- spectrum at about 900 hz is not

unreasonable (k=1.8) which suggests a slightly more spiky waveform than

a half-cycle sine-wave; there is indeed a minimum in (our) spectrum of

the SALMON recording at the correct value. The use of spectra to study

Q I unfortunately leads to expected and not very revealing results: 0
- 1

should vary as w-I for aiy pulse, independent of the mechanism; the

first peak in the spectrim only gives information about the spectrum of

the exciting signal. Neither property gives information about the

mechanism of absorptiom. Thus we are obliged to discard spectral

analysis as a possible means of identifying absorption mechanism. To

identify mechanism, we mLst analyzc the waveforms in the time domain in

these strongly nonlinear circumstances. This means that the analysis

of attenuation on teal signals must also be done in the time domain;
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frequency analysis is likely to yield little information on this

problem.

VIII. Conclusions

1) It is possible to understand the behavior of absorption for

harmonic excitations for reasonable, though non-linear, physical

mechanisms; in this discussion we have considered absorption due to

fatigue crack growth and stress corrosion.

2) At large strains, the fatigue crack process is not independent of

creep effects. To explain the results of amplitude modulated

sinusoidal excitations, or spectrum loading as it is called in the

engineering literature, we have been obliged to introduce creep in

the slip-weakening or plastic zone near the crack tips.

Deformation continues to take place in this zone even though the

stress may be in the waning part of any cycle. This process allows

for continued crack growth on later cycles of applied stress, even

though the crack would have appeared to reach the length

appropriate to the maximum of the cyclic stress. Both stress

corrosion cracking and fatigue cracking turn out to be

non-Markovian in nature and hence to have frequency dependent Q's

at frequencies of excitation that are large compared with the

relaxation frequency.

3) Under fatigue crack conditions. 1/Q varies ai the cube of the

harmonic excitation amplitude.
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4) Because of the non-linearity, one should not expect the results

from sinusoidal excitation and non-sinusoidal (including impulsive)

excitation to agree. In the cases of fatigue crack growth and

stress corrosion, both non-linear mechanisms, Q is frequency

independent for a purely sinusoidal excitation, and detection by a

narrow bandwidth detector; for an impulsive or broad band seismic

1
signal with broadband detection, Q -0

5) For non-time harmonic excitation, it is possible to derive a

transfer function for the non-linear attenuation operator. For

widely divergent excitation waveforms, Q varies approximately as

Wi. Unfortunately, this result is probably due to the fact that

the absorption mechanism operates over a short time interval during

the stress cycle. Hence spectral analysis is likely to give very

little information about the nature of the absorption mechanism.

Recourse should be made to analysis in the time domain. To study

the mechanism, we must analyze the waveforms in the time domain in

these strongly nonlinear circumstances. This means that the

analysis of attenuation on real signals must also be done in the

time domain; frequency analysis is likely to yield little

information on this problem.
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